Surname	Centre Number	Candidate Number
First name(s)		2

GCE A LEVEL

S23-1410U40-1

MONDAY, 19 JUNE 2023 – AFTERNOON

CHEMISTRY – A2 unit 4

Organic Chemistry and Analysis

1 hour 45 minutes

	For Examiner's use only				
	Question	Maximum Mark	Mark Awarded		
Section A	1. to 7.	10			
Section B	8.	13			
	9.	15			
	10.	15			
ed a:	11.	15			
	12.	12			
	Total	80			

ADDITIONAL MATERIALS

In addition to this examination paper, you will nee

 calculator; Data Booklet supplied by WJEC.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page.

Section A Answer all questions.

Section B Answer all questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

Candidates are advised to allocate their time appropriately between Section A (10 marks) and Section B (70 marks).

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

The maximum mark for this paper is 80.

Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.

The assessment of the quality of extended response (QER) will take place in Q10(a).

	SECTION A	Examir only
	Answer all questions.	
1.	Give the structure of an unsaturated aldehyde of molecular formula C_4H_6O . [7]	1]
2.	State a group that will give a positive triiodomethane (iodoform) test and give the observation for a positive result.	2]
3.	 (a) 1,2-Diaminoethane reacts as a base. Explain how this compound acts as a base. 	1]
	(b) Give the structure of the organic compound formed when 1 mole of 1,2-diaminoethane reacts with 2 moles of ethanoyl chloride.	

1410U401 03

03

1410U401 05

-	_
Γ.	-
•	٦
~	,

	Section B	Exan
	Answer all questions.	
8. (a) So sli	orbic acid was isolated in 1859 from mountain ash berry oil. It is a white solid that is ightly soluble in cold water. $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	
(The solubility of sorbic acid in water is 1.6 g dm⁻³ at 20 °C and 40.0 g dm⁻³ at 100 °C. Calculate how much sorbic acid is precipitated from its aqueous solution if 200 cm³ of a saturated solution at 100 °C is cooled to 20 °C. Give your answer to an appropriate number of significant figures. [2]]
(i	 ii) Sorbic acid and its salts, for example sodium sorbate, have important uses as antimicrobial agents in food preservation. Some moulds are, however, able to detoxify the action of these sorbates. An example is the decarboxylation of sodium sorbate. I. State what is meant by 'decarboxylation'. [1]]
	 II. In the laboratory sodium sorbate can be decarboxylated by heating it with soda lime. The organic product of decarboxylation is <i>E</i>-penta-1,3-diene. Write the equation for this decarboxylation of sodium sorbate with soda lime (which you should represent as NaOH in your equation), showing the structure of <i>E</i>-penta-1,3-diene. [2]]
05	© WJEC CBAC Ltd. (1410U40-1) Turn over.	

	III. <i>E</i> -penta-1,3-diene can then react with hydrogen using platinum as a catal giving pentane.	yst
	State the number of moles of hydrogen required to react with 0.2 mol of E -penta-1,3-diene in this way.	[1]
		•••••
(b)	lartaric acid (2,3-dihydroxybutanedioic acid) is used in the food industry.	
	$\begin{array}{c} O \\ HO \\$	
	(i) Indicate any chiral centre(s) present by means of an asterisk (*).	[1]
	 (ii) This acid occurs in a number of optically active forms. Complete the sentences below. 	
	Forms of tartaric acid that rotate the plane of plane-polarised light are called	
		[1]
	A solution containing an equimolar mixture of two forms of the acid that rotates the plane of plane-polarised light in equal and opposite directions is called a	
		[1]
(C)	Both sorbic acid and tartaric acid are described as showing stereoisomerism.	
	Explain what is meant by the term stereoisomerism.	[1]
(d)	Tartaric acid is formed when butenedioic acid reacts with a suitable oxidising agent.	
. ,	Cive the equation for this reaction, representing the evidicing ergent of [O] and using	

1410U401 07

Examiner

	Number of carbon atoms in the alkyl chain	Solubility in water at 25 °C/gdm ⁻³	
	3	94	
	5	1.6	
	7	0.7	
Sug	gest why this solubility decreases	as the chain length increases.	[2]

08

1410U401 09

(b)	(i)	The acid ch made by re The other p trichloride,	nloride, benze acting benze products of thi POCl ₃ .	ene-1,4-dicarbonyl dichl ne-1,4-dicarboxylic acic is reaction are hydroger	oride, CIOC — I with phosphor n chloride and p	C ₆ H ₄ — COCI is rus(V) chloride. bhosphoryl	
		Give the eq	juation for this	s reaction.		[1]]
	(ii)	Benzene-1, polyamide.	4-dicarbonyl	dichloride reacts with b	enzene-1,4-dia	mine to give a	
		Show the re	epeating unit	for this polyamide.		[1]]
(C)	Nylo carbo For e acid	n polyamides on atoms are example Nylc fragment.	s that are pro- e given numbe on 4,5 has a 4	duced from starting ma ers. I-carbon diamine fragm	terials with a di ent and a 5-ca	fferent number of rbon dicarboxylic	
	Buta prod	ne-1,4-diami uced in a two	ne can be us o-stage reacti	ed as a starting materia ion from butane-1,4-dio	al for this polyar I.	nide. This can be	
OCH ₂	(CH ₂)	₂ CH ₂ OH	reagent A Stage 1	CICH ₂ (CH ₂) ₂ CH ₂ CI	reagent B Stage 2	H ₂ N(CH ₂) ₄ NH ₂	
	(i)	State the na	ame of reage	nt(s) A .		[1]]
	 (ii)	State the na	ame of reage	nt(s) B .		[1]]

			Examiner
	(iii)	State the type of mechanism occurring in Stage 2. [1]	only
	(iv)	Draw the skeletal formula of the 5-carbon containing dicarboxylic acid used to produce Nylon 4,5. [1]	
(d)	The prob envii Poly spec into	depolymerisation of polyamides and polyesters present a number of difficult olems as these polymers are very stable and only slowly decompose in the ronment. (ethyleneterephthalate) (PET) is very difficult to hydrolyse but a new process using cific enzymes is proving promising. In this process 90% of PET is depolymerised benzene-1,4-dicarboxylic acid. $\downarrow \bigcirc \\ -C - O - CH_2 - CH_2 - O + 2H_2O + O + O + O + O + O + O + O + O + O +$	
	Calc yield	culate the mass of benzene-1,4-dicarboxylic acid produced from 75kg of PET if the I from this hydrolysis is 90%. [3]	
		mass of benzene-1,4-dicarboxylic acid produced =kg	15
10		© WJEC CBAC Ltd. (1410U40-1)	

1410U401 11

			Examiner
10.	(a)	Benzene reacts with bromine in the presence of a catalyst. Give the mechanism for this reaction and explain how the Br — Br bond becomes polarised during the reaction. Suggest why, in the absence of this catalyst, there is very little reaction between	oniy
		benzene and bromine under normal conditions. [6 QER]	
	·····		0 U 4 0 1
			4
	•••••		
	•••••		
	•••••		
	•••••		
	·····		
	•••••		

			Examin
(b)	Eug etha	enol is the main constituent of clove oil, together with smaller quantities of eugeny anoate.	yl
		$\begin{array}{c} CH_2CH = CH_2 \\ \downarrow \\ OCH_3 \\ OH \end{array} \qquad \begin{array}{c} CH_2CH = CH_2 \\ \downarrow \\ OCH_3 \\ OCH$	
		$C - CH_3$ Eugenol Eugenyl ethanoate	
	(i)	Describe what is seen if a few drops of iron(III) chloride solution are added to a solution of eugenol.	[1]
	(ii)	State the colour change that occurs if a few drops of aqueous bromine are adde to a solution of eugenol.	ed [1]
	(iii)	If an excess of bromine is added to eugenol, a new compound is formed that contains the following percentages by mass of each element.	
		C 24.9% H 2.1% O 6.6%, the remainder being the % of bromine	
		Use this information to calculate the empirical and molecular formulae of this brominated compound and suggest a possible structure for it.	[5]

			Examiner
	(iv)	Explain how adding aqueous sodium hydroxide at room temperature to a solution of eugenol and eugenyl ethanoate dissolved in trichloromethane, enables the two compounds to be separated	only
		Trichloromethane and water are immiscible. [2]	
	••••••		
			15
וו∎ו 2		_	

Examiner only

- A mixture of α -amino acids can be separated and identified by thin layer (C) chromatography.
 - These amino acids are colourless and the chromatogram is sprayed with a (i) solution of ninhydrin, so that the amino acids appear as purple dots. The colour is due to the dye Ruhemann's Purple.

A thin layer chromatogram of a mixture of α -amino acids is shown below.

16

	The informer'		a tha a - I-			
	the visible spe Use this to he	on below Indicate ectrum. Ip you explain wh	ny the color	urs absorbe	ed at various wav ve is purple.	elengths in [1]
	400	500	6	00	700	
		wavel	ength/nm			
	b	lue greer	n yellow	orange	red	
·····	Calculate the	enerav (in kJ mol	⁻¹) associa	ated with th	is absorption at 5	64 nm. [3]
,			,			
				energ	ι γ =	kJ mol ¹
				energ	ıy =	kJ mol ⁻¹
				energ	ıy =	kJ mol ⁻¹
				energ	ıy =	kJ mol ⁻¹
				energ	ıy =	kJ mol ⁻¹
				energ	yy =	kJ mol ¹
				energ	ıy =	kJ mol ⁻¹
				energ	ıy =	kJ mol ¹

(d) Amino acids react with nitric(III) acid to produce nitrogen gas.	only
$R - CH(NH_2) - COOH + HNO_2 \rightarrow R - CH(OH) - COOH + N_2 + H_2O$	
 (i) 0.500 g of 2-aminohexanoic acid, CH₃(CH₂)₃CH(NH₂)COOH, reacted with an excess of nitric(III) acid. 	
Calculate the volume of nitrogen produced, assume the temperature was measured at 298K and at 1 atmosphere pressure. [2]	
volume of nitrogen produced =	
(ii) The actual volume of nitrogen produced was 90.9 cm ³ , which was less than the calculated volume in part (i) above.	
Suggest two reasons for this low result, apart from errors in weighing and in measuring the volume of nitrogen produced. [2]	
1	
]
	15

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only
		1
	······	

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

GCE A LEVEL

S23-1410U40-1A

MONDAY, 19 JUNE 2023 – AFTERNOON

CHEMISTRY – A2 unit 4 Data Booklet

Avogadro constant
molar gas constant
molar gas volume at 273K and 1 atm
molar gas volume at 298 K and 1 atm
Planck constant
speed of light
density of water
specific heat capacity of water
ionic product of water at 298 K
fundamental electronic charge

N_{\star}	=	$6.02 \times 10^{23} \text{ mol}^{-1}$
R^{A}	=	8.31 J mol ⁻¹ K ⁻¹
V_m	=	22.4 dm ³ mol ⁻¹
V_m	=	24.5 dm ³ mol ⁻¹
h	=	$6.63 imes 10^{-34} \mathrm{Js}$
С	=	$3.00 \times 10^8 \mathrm{ms^{-1}}$
d	=	1.00 g cm ⁻³
С	=	4.18 Jg ⁻¹ K ⁻¹
K_w	=	$1.00 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$
е	=	1.60 × 10 ⁻¹⁹ C

temperature (K) = temperature ($^{\circ}$ C) + 273

 $1 \,\mathrm{dm^3} = 1000 \,\mathrm{cm^3}$ $1 \,\mathrm{m}^3 = 1000 \,\mathrm{dm}^3$ 1 tonne = 1000 kg1 atm = $1.01 \times 10^5 \text{ Pa}$

Multiple	Prefix	Symbol	Multiple	Prefix	Symbol
10 ⁻⁹	nano	n	10 ³	kilo	k
10 ⁻⁶	micro	μ	10 ⁶	mega	М
10 ⁻³	milli	m	10 ⁹	giga	G

Infrared absorption values

Bond	Wavenumber/cm ⁻¹
C — Br	500 to 600
C - CI	650 to 800
C-O	1000 to 1300
C = C	1620 to 1670
C=0	1650 to 1750
$C \equiv N$	2100 to 2250
C - H	2800 to 3100
O-H (carboxylic acid)	2500 to 3200 (very broad)
O—H (alcohol / phenol)	3200 to 3550 (broad)
N-H	3300 to 3500

13 C NMR chemical shifts relative to TMS = 0

Type of carbon	Chemical shift, δ (ppm)
$-\mathbf{c}$ $-c$	5 to 40
$\begin{array}{c} R \overset{ }{-} \overset{ }{C} \overset{ }{-} CI \text{or} Br \\ \end{array}$	10 to 70
$\begin{array}{c} R-c-c-c-\\ & \\ o \end{array}$	20 to 50
R - C - N	25 to 60
	50 to 90
]c=c_	90 to 150
$R-C\equiv N$	110 to 125
	110 to 160
R — C — (carboxylic acid / es O	ster) 160 to 185
R — C — (aldehyde / ketone) O	190 to 220

¹H NMR chemical shifts relative to TMS = 0

Type of proton	Chemical shift, δ (ppm)
$-CH_3$	0.1 to 2.0
$R-CH_3$	0.9
$R-CH_2-R$	1.3
$CH_3 - C \equiv N$	2.0
CH ₃ -C	2.0 to 2.5
-CH2-C	2.0 to 3.0
	2.2 to 2.3
HC-Cl or HC-Br	3.1 to 4.3
HC-O	3.3 to 4.3
R-OH	4.5 *
-C = CH	4.5 to 6.3
-C = CH - CO	5.8 to 6.5
CH=C	6.5 to 7.5
<i>—</i> н	6.5 to 8.0
⊘≻он	7.0 *
R-CH	9.8 *
R-COH	11.0 *

*variable figure dependent on concentration and solvent

Group 3 4 Key Key Name Symbol Name State Symbol Symbol Name State Symbol Symbol Name State Symbol State Symbol State Symbol State State State Stat	Group 3 4 5 Rey symbol Rey atomic atomic A 5 4 5 Name value Symbol Symbol Symbol Public Symbol Symbol Symbol Symbol Symbol Name Stor Stol Symbol Symbol Name Stor Stol Stol Stol Old Tic Rud Rud Stol Stol Old Tic Rud Stol Stol Stol Old Tic Rud Rud Stol Stol Old Tic Rud Rud Stol Stol Old Tic Rud Rud Rud Rud </th <th>Group 3 4 5 6 Key atomic atomic atomic atomic Symbol atomic atomic atomic atomic And Size Size Size Atomic atomic And Size Size Size Size Size Size Advin Disor Cr Min Pate Size Size Size Size Size Size Size Size Size Size Size Size Size</th>	Group 3 4 5 6 Key atomic atomic atomic atomic Symbol atomic atomic atomic atomic And Size Size Size Atomic atomic And Size Size Size Size Size Size Advin Disor Cr Min Pate Size Size Size Size Size Size Size Size Size Size Size Size Size
Cup 3 4 Y relative atomic mass atomic atomic mass 3 4 - atomic mass - atomic mass - atomic atomic mass - atomic atomic mass 3 4 - atomic mass - atomic mass - atomic mass - atomic mass - atomic mass 10.8 12.0 - atomic mass - a	Coup 3 4 5 relative mass - atomic atomic number - atomic atomic - atomic atomic - atomic atomic - atomic - atomic - atomic number - atomic number - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic - atomic -	V 3 4 5 6 relative atomic mass **elative atomic **elative atomic **elative atomic **elative atomic **elative mass **elative atomic **elative atomic **elative atomic **elative atomic **elative atomic **elative mass **elative atomic **elative atomic **elative atomic **elative atomic **elative atomic **elative mass **elative atomic **elative atomic **elative atomic **elative atomic **elative atomic **elative atomic **elative mass 55.8 58.9 58.7 65.4 58.1 63.5 65.4 72.0 74.0 70.0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
3 4 33 4 33 4 34 4 35 58.7 58.9 58.7 58.9 58.7 58.9 58.7 58.9 58.7 58.9 58.7 58.9 58.7 58.9 58.7 58.9 58.7 58.9 58.7 58.9 58.7 58.9 58.7 58.9 58.7 58.9 58.7 58.9 58.7 58.9 58.7 58.9 58.7 58.9 58.7 58.9 58.7 58.100 58.7 58.100 58.7 58.100 58.7 58.7 58.7 58.7 58.7 58.7 58.7 703 112 112 113 113 112 113 113 114 112 115 113 116 112 117 113 118 114 119 111 110 113 111 <	3 4 5 8 9 10 14:0 14:0 14:0 14:0 14:0 14:0 14:0 1	3 4 5 6 S8.9 58.1 63.1 10.8 12.0 14.0 16.0 S8.9 58.1 63.5 65.4 63.7 73.6 74.9 79.0 S8.9 58.7 63.5 65.4 63.7 72.6 74.9 79.0 S8.9 58.7 63.5 65.4 63.7 72.6 74.9 79.0 S8.9 70.0 71.0 71.0 71.0 71.0 73.1 73.0 32.1 S8.9 63.7 52.6 55.4 63.7 52.6 74.9 79.0 S100 Nickel 200 11.0 71.0 71.0 74.9 79.0 S101 Nickel 203 31.1 32.0 33.3 34.10 Vidium Pladium 70 66. AS 59.0 S101 Nickel 203 31.1 32.0 33.3 Vidium Pladium 70 201 16.0 16.0 Vidium Pladium 70 201 17.2 128 Vidium Pladium 70 201 201 16.0 Vidium 79.0 70 209 70.0 </td
3 4 33 4 38.7 63.5 63.5 63.5 63.5 63.1 58.7 63.5 63.5 63.5 63.5 63.5 63.1 58.7 63.5 63.5 63.5 63.5 63.1 12.0 88.7 63.5 63.5 63.5 63.5 63.1 12.0 98 72.6 80.7 72.6 80.7 72.6 106 108 112 113 113 114 28 29 30 31 32 32 28 29 30 31 32 14 106 108 112 115 119 110 195 197 201 115 119 32 195 197 201 204 105 11 195 197 201 204 105 11 195 197 201 204 10 10 138 165 163 169 10 10 139 165 163 10 10 10 130 131 131 132 14 14 131	3 4 5 10.8 12.0 14.0 Nitrogen 58.7 0. 28.1 31.0 14.0 Nitrogen 58.7 10.8 12.0 14.0 Nitrogen 58.7 10.8 12.0 14.0 Nitrogen 58.7 13.1 14.1 31.0 14.0 Nitrogen 58.7 13.1 14.1 31.0 14.0 15.0 14.0 Nitrogen 58.7 27.0 28.1 31.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 15.0 15.0 14.0 15.0 15.0 14.0 15.0 15.0 15.0 14.0 15.0 15.0 15.0 15.0 14.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15	3 4 5 6 S87 63.5 65.4 5 6 7 0 0 S87 63.5 65.4 23.1 71.0 10.0 10.0 S87 63.5 65.4 69.7 72.6 74.9 70.0 S87 63.5 65.4 69.7 72.6 74.9 70.0 S10 7.0 28.1 71.0 73.1 74.9 73.0 S87 63.5 65.4 69.7 72.6 74.9 79.0 Nickel 27.0 28.1 74.9 72.6 74.9 70.0 S10 105 112 115 114 15 16 Peladium Silver Cadmium 66.7 73.3 33.4 S10 70.0 811 112 115 116 Patanum 66.7 72.6 74.9 72.0 72.0 Patanum 60.1 10.1 122 128 160.0 Patanum 60.1 66.7 72.8 73.9 27.0 Patanum 70.0 81.0 17.2 128 129 Patanum 70.0 81.0 72.0 51.0
3 4 10.8 10.8 12.0 Boron 8000 81.12.0 Boron 55.4 69.7 Cu 27.0 28.1 Al 27.0 28.1 Al 72.6 6 Cu 27.0 28.1 Al 72.6 6 Cu 27.0 28.1 Al 72.6 6 Cu 27.0 28.1 Al 112 115 Al 43 33 Al 43 60.7 Au 66.7 72.6 Copper 201 201 Al 49 50 Au Al Al Au Al Al Au Au Cu Au Au	3 4 5 3 4 5 3 4 5 5 63.5 63.5 63.1 63.5 63.5 63.5 63.1 12.0 63.5 63.5 63.7 5 6 7 7 7 6 7 7 63.5 65.4 69.7 72.6 74.9 7 72.6 28.1 31.0 7 73 6 7 7 8 Cd 113 113 114.0 132 108 112 113 31.0 50 74.9 8 63.1 63.7 72.6 74.9 8 113 113 113 113 108 112 113 113 113 113 113 113 122 114 112 119 122 115 119 50 83 116 117 119 122 118 119 122 129 131 132 131 132 133 131 132 133 132 133 132 <td>3 4 5 6 9 100 100 100 100 100 100 100 100 100 1</td>	3 4 5 6 9 100 100 100 100 100 100 100 100 100 1
3 10.8 12.0 Boron 5 6 Boron 5 6 Boron 5 6 Boron 28.1 12.0 Boron 8 12.0 Boron 13 14 Aluminium 210.0 28.1 30 31 32 30 31 32 31 13 14 112 115 119 112 115 72.6 48 49 50 80 81 82 Mercury 81 82 163 165 179 163 165 170 163 165 170 163 165 170 163 166 170 163 166 160 163 167 167 163 166 167 164 167 167 165 166 167 165 166 167 </td <td>3 4 5 10.8 12.0 14.0 Boron Carbon Nitrogen 5 65.4 69.7 7 30 31 31.0 7 30 31 32.0 83.1 112 115 116 7 112 115 72.6 74.9 112 115 72.6 74.9 27.0 28.1 31.0 30 31 32 30 31 32 31 7 66 Alwininium Silicon P Aluminium 112 119 123 33 31 32 32 33 33 32 31 50 51 50 51 7 7 165 165 16 163 165 164 16 165 16 165 16 163 16 163 16</td> <td>3 4 5 6 3 4 5 6 3 4 5 6 10.8 12.0 14.0 16.0 8 12.0 12.0 14.0 16.0 8 27.0 28.1 31.0 32.1 Aluminium Silicon Phosphorus Sulfur 13 14 15 73.0 32.1 13 14 51 P 33.0 13 14 15 73.0 53.1 112 115 119 73.0 53.1 112 115 119 72.6 74.9 73.0 201 201 33.1 34.4 52.1 53.1 112 115 119 72.6 74.9 79.0 201 201 203 34.9 50.3 51.16 113 116 113 122 122 128 113 116 122 122 128 113 163 83.3 84 103 10 122 128 103 103 103 103 103 165 167</td>	3 4 5 10.8 12.0 14.0 Boron Carbon Nitrogen 5 65.4 69.7 7 30 31 31.0 7 30 31 32.0 83.1 112 115 116 7 112 115 72.6 74.9 112 115 72.6 74.9 27.0 28.1 31.0 30 31 32 30 31 32 31 7 66 Alwininium Silicon P Aluminium 112 119 123 33 31 32 32 33 33 32 31 50 51 50 51 7 7 165 165 16 163 165 164 16 165 16 165 16 163 16 163 16	3 4 5 6 3 4 5 6 3 4 5 6 10.8 12.0 14.0 16.0 8 12.0 12.0 14.0 16.0 8 27.0 28.1 31.0 32.1 Aluminium Silicon Phosphorus Sulfur 13 14 15 73.0 32.1 13 14 51 P 33.0 13 14 15 73.0 53.1 112 115 119 73.0 53.1 112 115 119 72.6 74.9 73.0 201 201 33.1 34.4 52.1 53.1 112 115 119 72.6 74.9 79.0 201 201 203 34.9 50.3 51.16 113 116 113 122 122 128 113 116 122 122 128 113 163 83.3 84 103 10 122 128 103 103 103 103 103 165 167
3 10.8 <t< td=""><td>3 4 5 10.8 10.8 10.8 10.8 5 6 7 7 5 6 7 7 5 6 7 7 6 7 7 14.0 8 13 14 14.0 9 13 12.0 14.0 10.8 13 12.0 14.0 8 8 33.1 31.0 115 72.6 68.7 74.9 68.7 72.6 74.9 74.9 69.7 72.6 74.9 74.9 69.7 72.6 74.9 74.9 69.7 72.6 74.9 51.1 115 119 122 14.0 116 118 119 122 116 118 81 82 81 82 83 83 165 167 169 161 165 167 169 161</td><td>3 4 5 6 10.8 12.0 14.0 16.0 5 6 7 8 5 6 7 8 27.0 28.1 14.0 0.0 8 72.6 74.9 73.0 89.7 72.6 74.9 79.0 69.7 72.6 74.9 79.0 69.7 72.6 74.9 79.0 69.7 72.6 74.9 79.0 69.7 72.6 74.9 79.0 69.7 72.6 74.9 79.0 69.7 72.6 74.9 79.0 69.7 72.6 74.9 79.0 69.7 72.6 74.9 79.0 69.7 72.6 74.9 79.0 69.7 72.6 74.9 79.0 69.7 72.6 74.9 79.0 115 119 122 167 116 119 122 128 116 119 720 51 116 119 122 128 116 110 122 128 16 110 122 120 16</td></t<>	3 4 5 10.8 10.8 10.8 10.8 5 6 7 7 5 6 7 7 5 6 7 7 6 7 7 14.0 8 13 14 14.0 9 13 12.0 14.0 10.8 13 12.0 14.0 8 8 33.1 31.0 115 72.6 68.7 74.9 68.7 72.6 74.9 74.9 69.7 72.6 74.9 74.9 69.7 72.6 74.9 74.9 69.7 72.6 74.9 51.1 115 119 122 14.0 116 118 119 122 116 118 81 82 81 82 83 83 165 167 169 161 165 167 169 161	3 4 5 6 10.8 12.0 14.0 16.0 5 6 7 8 5 6 7 8 27.0 28.1 14.0 0.0 8 72.6 74.9 73.0 89.7 72.6 74.9 79.0 69.7 72.6 74.9 79.0 69.7 72.6 74.9 79.0 69.7 72.6 74.9 79.0 69.7 72.6 74.9 79.0 69.7 72.6 74.9 79.0 69.7 72.6 74.9 79.0 69.7 72.6 74.9 79.0 69.7 72.6 74.9 79.0 69.7 72.6 74.9 79.0 69.7 72.6 74.9 79.0 69.7 72.6 74.9 79.0 115 119 122 167 116 119 122 128 116 119 720 51 116 119 122 128 116 110 122 128 16 110 122 120 16
4 ¹²⁰ ¹²⁰ ¹	4 5 12:0 12:0 6 7 6 7 7 14:0 6 7 7 7 8 14:0 119 12:0 110 12:0 111 12:0 111 12:0 111 12:0 111 12:0 111 12:0 111 12:0 111 12:0 111 12:0 111 12:0 111 12:0 111 12:0 111 <td>4 5 6 12.0 12.0 14.0 16.0 12.0 Nitrogen 14.0 0.0 0 Carbon Nitrogen 32.1 8 7 8 32.1 28.1 31.0 7.8 8 28.1 31.0 7.9 8 28.1 74.9 79.0 32.1 50 Ge As 33.3 34.4 119 122 74.9 79.0 32 33 33.3 34.4 19 122 74.9 79.0 50 Ge As 79.0 6 As 74.9 79.0 72.6 As 74.9 79.0 710 Bismuth Polonium 82 83 83 82 83 83 82 83 83 167 169 70 167 169 70 167 70 52 168 93 94</td>	4 5 6 12.0 12.0 14.0 16.0 12.0 Nitrogen 14.0 0.0 0 Carbon Nitrogen 32.1 8 7 8 32.1 28.1 31.0 7.8 8 28.1 31.0 7.9 8 28.1 74.9 79.0 32.1 50 Ge As 33.3 34.4 119 122 74.9 79.0 32 33 33.3 34.4 19 122 74.9 79.0 50 Ge As 79.0 6 As 74.9 79.0 72.6 As 74.9 79.0 710 Bismuth Polonium 82 83 83 82 83 83 82 83 83 167 169 70 167 169 70 167 70 52 168 93 94
	D D D 14:0 14:0 14:0 7 7 14:0 7 7 15 122 33:0 33:0 122 33:0 31:0 125 74:9 74:9 125 74:9 74:0 125 74:9 74:0 15 74:9 83:3 16 Bismuth 83:3	5 5 6 Plock 14.0 Nitrogen Nitrogen 31.0 0.0 Nitrogen 32.1 9 Nation 16.0 0 Nation 16.0 0 122 14.0 0 122 128 16 122 128 16 123 33.3 34 51 52 56 51 52 128 16 79.0 79.0 83 84 84 16 70.0 8 1122 128 128 51 52 52 51 52 52 83 84 90 83 84 84
6 7 0ck 7 0ck 7 16.0 19.0 0 0 16.0 19.0 0 0 16.0 19.0 16.0 19.0 16.1 19.0 16.1 19.0 16.1 17 79.0 79.9 32.1 35.5 52 53 52 53 128 127 128 127 79.0 79.9 84 35 84 85 84 85	A Fluorine 9 35.5 Cl 17 17 17 17 17 17 17 17 17 17 17 17 17	

© WJEC CBAC Ltd.

(1410U40-1A)

PMT

Lawrencium 103

Nobelium 102

Mendelevium 101

Fermium 100

Einsteinium 99

Califomium 98

Berkelium 97

Curium 96

Americium 95

Plutonium 94

Neptunium 93

Uranium 92

Protactinium 91

Thorium 90

(257) Lr

(254) No

(256) Md

(253) Fm

(254) Es

Cf

(245) BK

(247) Cm

(243) Am

(242) Pu

(237) Np

∪ 238

(231) Pa

232 Th

Actinoid elements

4

THE PERIODIC TABLE